M1.(a) $\quad \mathrm{pV}=\mathrm{nRT}$
Do not penalise incorrect use of capitals / lower case letters. Accept correct rearrangement of equation.
(b) $\quad 2 \mathrm{C}_{4} \mathrm{H}_{10}+5 \mathrm{O}_{2} \rightarrow \mathbf{4 \mathrm { CH } _ { 3 } \mathrm { COOH } + \mathbf { 2 H } \mathrm { H } _ { 2 } \mathrm { O }}$

Accept any correct combination of multiples, including fractions.
(c) 23.0 g ethanol produces 30.0 g ethanoic acid

M2. (a) (i) $\quad M_{r}=132.1$
132
0.0238

Allow 0.024
Allow 0.0237
Penalise less than 2 sig fig once in (a)
(ii) 0.0476

1
0.0474-0.0476

Allow (a) (i) $\times 2$
(iii) 1.21

Allow consequential from (a) (ii) ie allow (a) (ii) $\times 1000 / 39.30$
Ignore units even if wrong
(b) $\frac{34 \times 100}{212.1}$

Allow mass or Mr of desired product times one hundred divided by total mass or Mr of reactants/products If 34/212.1 seen correctly award M1
$=16.0(3) \%$
Allow 16\%
16 scores 2 marks
(c) 100(\%)

Ignore all working
(d) $\quad \mathrm{PV}=\mathrm{nRT}$ or $\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}$

If rearranged incorrectly lose M1 and M3

$$
\mathrm{n}=\frac{\frac{100000 \times 1.53 \times 10^{-2}}{8.31 \times 310}}{} \begin{aligned}
& \quad \begin{array}{l}
\text { M2 for mark for converting } P \text { and } T \text { into correct units in any } \\
\text { expression }
\end{array}
\end{aligned}
$$

$$
=0.59(4)
$$

Allow 0.593
M3 consequential on transcription error only not on incorrect P and T
(e) $\quad\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right) \quad \mathrm{H}_{2} \mathrm{O}$
(44.1\%) 55.9\%

M1 is for 55.9

$44.1 / 142.1$	$55.9 / 18$
0.310	3.11
$=1$	$=10$

Alternative method gives180 for water part $=2$ marks

$$
x=10
$$

$X=10=3$ marks
10.02 = 2 marks
[13]

M3. (a) (i) $0.00301 / 3.01 \times 10^{-3}$;
Penalise < 3sf in (a)(i);
Allow $3.01 \times 10^{-3}-3.05 \times 10^{-3}$.
(for candidates who have used Mg as 24)
(ii) 0.00602

Allow correct answer a(i) $\times 2$.
(iii) $0.00965 / 9.65 \times 10^{-3}$;

Allow 0.009646/ 0.0096-0.0097.
(iv) 0.00363 moles;

Allow range 0.0035 to 0.0037 .
Allow (a)(iii) - 2 (a)(ii) (must be positive).
(b) $\mathrm{PV}=\mathrm{nRT}$;

Allow all capitals/ lower case.
$\mathrm{V}=\frac{0.512 \times 8.31 \times 298}{96000}$;
M2 Mark is for all numbers correct.
If units in answer are in dm^{3} allow this expression with 96 in denominator.
$0.0132 \mathrm{~m}^{3} / 13.2 \mathrm{dm}^{3}$;
M3 Must have correct units/ allow $13200 \mathrm{~cm}^{3}$.
Allow min 2 sig figs in answer.
(c) $\mathrm{O}=69.6(\%) ;$
$\frac{30.4}{14} \quad \frac{69.6}{16}$
$2.17: 4.35$
Use of 7/8 CE then M1 only.
(1:2) $\underline{\mathrm{NO}}_{2}$
Mark for formula not ratio.
If NO_{2} and no working shown then allow 1 mark.
If $69.6 \%+\mathrm{NO}_{2}$ only $=2$.
Need to see evidence of M2 working.
Allow M2 conseq on the wrong M1 (ie max 1).

M4. (a) (i) Moles of gas produced $=3$

$$
P V=n R T
$$

$$
V=n R T / P=3 \times 8.31 \times 298 / 100000
$$

$$
=7.43 \times 10^{-2} \mathrm{~m}^{3}
$$

(ii) $7.43 \times 10^{-2} \times 1000 / 298=0.249 \mathrm{~m}^{3}$
(b) (i) any two from:
exhaust gases hot so would boil the solution away solution would splash reaction might be too slow would need continuous supply of solution and/or replacement of products
(ii) Commercial advantage could sell chlorine and/or hydrogen
environmental disadvantage generation of electricity
likely to lead
to release of CO_{2} (or chlorine toxic)
(c) $\% \mathrm{O}=74 \%$
$\mathrm{N}: \mathrm{O}=26 / 14: 74 / 16$
$=1.86: 4.63=1: 2.5$ therefore formula is $\mathrm{N}_{2} \mathrm{O}_{5}$
(d) $2 \mathrm{~N}_{2} \mathrm{O} \rightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2}$
(e) Proportion of O_{2} increased leading to higher T (or more complete combustion)

1

M5. (a) (i) Avogadro's number/constant of molecules/particles/species / 6×10^{23} [Not 'atoms']

Or same number of particles as (there are atoms) [Not molecules]
in $12 .(00) \mathrm{g}$ of ${ }^{12} \mathrm{C}$
1

1
(ii) Moles $\mathrm{O}_{2}=\frac{0.350}{32}\left(=1.09 \times 10^{-2} \mathrm{~mol}\right)$
$=29\left(\times 1.09 \times 10^{-2}\right)$
[Accept answers via 4 separate mole calculations]
$=0.316-0.317 \mathrm{~mol}$ [answer to $3+\mathrm{sf}$]
[Mark conseq on errors in M1/M2] (1)
(iii) Moles of nitroglycerine $=4 \times 1.09 \times 10^{-2} \quad(=0.0438 \mathrm{~mol})$
[Mark conseq on their moles of O_{2}]
M_{r} of nitroglycerine $=227$ or number string

Moles of nitroglycerine $=227 \times 0.0438=9.90-9.93(\mathrm{~g})$
[answer to 3+ sf]
[If string OK but final answer wrong then allow M6 but AE for M7]
[Mark conseq on error in M] [Penalise wrong units]
[Penalise sig. fig. errors once only in whole question]
(b) $\mathrm{pV}=\mathrm{nRT}$ or $\mathrm{pV}=\frac{\frac{m \mathrm{R} T}{\mathrm{~V}}}{}$ or $\mathrm{p}=\frac{\frac{n \mathrm{R} T}{V}}{\mathrm{~V}}$

$$
=7980093 \text { or } 7980 \text { or } 7.98
$$

[ignore s.f.]

$$
\begin{aligned}
& \text { units = Pa or } \mathrm{kPa} \text { or MPa (as appropriate) } \\
& \text { [If error in conversion from Pa, treat as a contradiction of the } \\
& \text { units mark] } \\
& \text { [If transfer error, mark conseq but penalise M2] } \\
& \text { [If data from outside of above used, penalise M2 and M3] } \\
& \text { [If pV expression incorrectly rearranged, penalise M2 and } \\
& \text { M3] } \\
& \text { [if } T=1373 \mathrm{~K} \text { used, penalise M2] }
\end{aligned}
$$

